835™ DIRECT CONNECT MODEM

FIELD SERVICE MANUAL
Atari believes that the information described in this manual is accurate and reliable, and much care has been taken in its preparation. However, no responsibility, financial or otherwise, shall be accepted for any consequences arising out of the use of this material. Information contained herein is subject to change. Revisions may be issued to advise of such changes and/or additions.

Correspondence regarding this document should be forwarded to Director of Technical Support, Consumer Product Service, Atari Incorporated, 845 West Maude Avenue, Sunnyvale, CA 94086.

835 Direct Connect Modem
Field Service Manual
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>1</td>
<td>THEORY OF OPERATION</td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td>Overview</td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td>Serial I/O Interface</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td>835 Controller Chip</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td>Functions of the Controller Chip</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td>On Hook/Off Hook</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td>Dial Digit</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td>Originate/Answer Mode</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td>Send Data</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>Receive Data</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>Present Status</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>Analog Loopback</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>Audio Off/On</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>Other Functions</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>Modem Chip</td>
<td>1-4</td>
</tr>
<tr>
<td></td>
<td>Transmit</td>
<td>1-4</td>
</tr>
<tr>
<td></td>
<td>Receive</td>
<td>1-4</td>
</tr>
<tr>
<td></td>
<td>Analog Loopback</td>
<td>1-4</td>
</tr>
<tr>
<td></td>
<td>Line Interface</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>Power Supply</td>
<td>1-5</td>
</tr>
<tr>
<td>2</td>
<td>SILKSCREEN AND SCHEMATICS</td>
<td>2-1</td>
</tr>
<tr>
<td>3</td>
<td>TEST PROCEDURES</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td>Equipment Required</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td>Power-Up Sequence</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td>Test Sequence</td>
<td>3-1</td>
</tr>
<tr>
<td>4</td>
<td>DIAGNOSTIC FLOWCHART</td>
<td>4-1</td>
</tr>
<tr>
<td>5</td>
<td>PARTS LIST</td>
<td>5-1</td>
</tr>
<tr>
<td>6</td>
<td>SERVICE BULLETINS</td>
<td>6-1</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>835 Direct Connect Modem Block Diagram</td>
<td>1-1</td>
</tr>
</tbody>
</table>
INTRODUCTION

The ATARI 835™ Direct Connect Modem Field Service Manual is organized in six sections:

- THEORY OF OPERATION - Overview of how the electrical theory of the modem operates.
- SILKSCREEN AND SCHEMATIC - Electrical drawings of the printed circuit board and layout.
- TESTING AND TROUBLESHOOTING - Procedures for testing the unit.
- 835 FLOWCHART - Block diagram of the procedures for testing, troubleshooting, and repairing a defective 835 unit.
- PARTS LIST - List of parts available from ATARI for repairing and maintaining the 835 unit.
- SERVICE BULLETINS - Section to be used to hold service bulletins released by the Director of Technical Support. These bulletins will include changes in recommended repair procedures and required modifications for units in the field.

IMPORTANT: In order to test the unit completely, the customer must return the following items to the Service Center: 835 Direct Connect Modem, 835 power adaptor, and Telelink II™ Cartridge.
SECTION ONE
THEORY OF OPERATION

INTRODUCTION

The 835™ Direct Connect Modem (DCM) is designed for use with the Bell 103 Telephone System. It operates at a transfer rate of 300 Baud. Features include, Automatic Pulse Dialing, Software controlled Originate/Answer Mode Switching, and Audio Monitoring of the telephone line. The 835 allows for transfer of data over the telephone line directly (bypassing the telephone handset).

WARNING: Do not hook the 835 DCM to Bell Telephone's "HorizonR System". Doing so damages the telephone system. "Horizon" is a 4-wire, non-standard configuration that accepts only touch-tone pulsing.

OVERVIEW

The 835 DCM connects to the 400/800 Computer through the Serial I/O Bus and is compatible with the 1200XL Computer. A separate 22 volt AC adaptor furnishes the power for the 835 DCM. The two major ICs used in the 835 DCM are an 8048 microprocessor and a Texas Instruments Modem IC.

The 835 DCM consists of the following functional units (see Figure 1-1):

- Serial I/O Interface
- 835 Controller (8048)
- Texas Instruments Modem Chip (TI99532)
- Telephone Line Interface
- Power Supply

All components referenced in the following detailed description of the 835 DCM functional units can be found on Page 1 of the oversize drawing package included with this manual.

![835 Direct Connect Modem Block Diagram](image-url)
SERIAL I/O INTERFACE

This circuit consists of the two 13-pin SIO Connectors (J2 and J3) and the LM339 Comparator (M6).

- Pins 3, 9, and 13 are inputs to the computer straight from the 835 Controller (M5).
- Pins 2, 5, 7, and 10 are outputs from the computer. The signals coming in on these pins go through the Comparator (M6), which acts as a latch, before reaching the 835 Controller (M5).

835 CONTROLLER CHIP

The 835 Controller chip is an Intel 8048 Microprocessor with Atari-designed firmware. The Controller performs the following functions:

- Translates the computer commands
- Sends data and status to the computer
- Receives data from the computer
- Sends data and commands to the Modem Chip
- Receives data and status from the Modem Chip

The 835 Controller (M5) communicates with the computer using the normal SIO Protocol at a rate of 300 Baud. It communicates with the Modem Chip using a modified RS-232C Protocol at a rate of 300 Baud.

FUNCTIONS OF THE CONTROLLER CHIP

On Hook/Off Hook

Upon receipt of either command from the computer, the Controller sends a signal out on Pin 24 causing the Relay (K1) to change state. The signal connects (Off-Hook) or disconnects (On-Hook) the 835 with the telephone line. The default condition is On-Hook.

Dial Digit

Upon receipt of this command from the computer, the Controller toggles the line Relay (K1) via Pin 24 to accomplish Pulse Dialing. The timing for this operation conforms to FCC and TAP (Canadian) specifications.

Originate/Answer Mode

Upon receipt of this command from the computer, the Controller sets Pin 37 HIGH (Originate) or LOW (Answer). This causes the Modem Chip (M4) to change to the correct transmit and receive frequencies. The default condition is Originate.
Send Data

Upon receipt of this command from the computer, followed by a single, asynchronous character on Pins 27 and 39, the Controller sends the same single asynchronous character to the Modem Chip (M4) on Pin 38.

Receive Data

Upon receipt of this command, the Controller sends a single character to the Computer on Pin 21, if a character is available. The Controller receives characters from the Modem Chip (M4) on Pins 1 and 34.

Present Status

Upon receipt of this command, the Controller sends Status information to the computer on Pin 21.

Analog Loopback

Upon receipt of this command, the Controller sets the Modem Chip (M4) to the Analog Loopback mode by pulling Pin 23 HIGH. This, in effect, disconnects the telephone line from the Modem Chip (M4), allowing the Modem Chip (M4) to be tested for correct functioning.

Audio Off/On

Upon receipt of this command, the Controller sends a signal out Pin 35, controlling Audio Monitoring of the telephone line.

Other Functions

- Setting the Baud Rate of the Modem Chip (M4) to 300 Baud on Pin 36
- Monitoring the Carrier Detect line from the Modem Chip (M4) on Pin 33
- Turning the Carrier Detect LED on with Pin 22 when Pin 33 goes Low
- Running a test on itself and the Modem Chip at power-up
MODEM CHIP

The Modem Chip is a Texas Instruments 99532 IC which uses Frequency Shift Keying to transmit and receive serial binary data over the telephone line.

The Modem Chip takes the digital signals from the 835 Controller (M5) and converts them to Analog signals for the telephone line and vice versa. In addition, the Modem Chip detects the presence of a carrier wave on the telephone line and passes this information on to the 835 Controller (M5).

Transmit

- 300 Baud character formatted data is placed on Pin 10 by the 835 Controller (M5).
- A LOW on Pin 13 sets the Transmitter for Bell 103 type output.
- Pin 12 receives a HIGH (Originate) or LOW (Answer) signal from the 835 Controller (M5) to set the Transmit and Receive frequencies.
 - In the Originate mode the transmitter issues a sinewave tone on Pin 16 at 1270Hz when Pin 10 is HIGH, and a 1070Hz tone when Pin 10 is LOW.
 - In the Answer mode the transmitter issues a sinewave tone of 2225Hz on Pin 16 when Pin 10 is HIGH, and a Tone of 2025Hz when Pin 10 is LOW.

Receive

When the Modem Chip detects a Carrier signal on Pin 15, it pulls Pin 2 LOW. This alerts the 835 Controller (M5) that a Carrier has been detected. Pin 2 stays LOW until Disconnect occurs.

- Turn-On and Turn-Off timing of the Carrier Detect is provided by the circuit connected to Pin 3 of the Modem Chip.

- In the Originate mode, when Pin 15 of the Modem Chip receives a 2025Hz, sinewave tone, Pin 4 goes LOW. A 2225Hz, sinewave tone sets Pin 4 HIGH.

- In the Answer mode a 1070Hz signal on Pin 15 sets Pin 4 LOW, and a 1270Hz, signal sets Pin 4 HIGH.

Analog Loopback

A HIGH on Pin 1 of the Modem Chip effectively disconnects it from the Line Interface. In addition it connects the transmitter and receiver portions of the chip together, allowing transmitted data to be "looped back" to the computer. This "loop back" tests the internal analog and digital circuits of the Modem Chip.
LINE INTERFACE

A description of the Line Interface functions follows.

- OFF/ON HOOK signals and PULSE DIALING signals are sent from Pin 24 of the 835 Controller (M5) through the Multiplexor (M3) to the Relay (K1).

- TRANSMIT signals are sent from Pin 16 of the Modem Chip (M4) to Pin 2 of the Op-Amp (M2) for amplification. Then from Pin 1 of (M2) to the Transformer (T1) and on to the telephone line, if Relay (K1) is closed.

- RECEIVE signals come from the telephone line across the Transformer (T1) and into Pin 5 of Op-Amp (M2). In M2 they are separated from the local Transmit signals and sent on to Pin 15 of the Modem Chip (M4). These Receive signals are also applied to Pin 2 of the Multiplexor (M3).

- When the 835 Controller (M5) sends a signal out Pin 35 to Pin 10 of the Multiplexor (M3), the Audio signals from the telephone line (e.g., dialtone, or someone talking) are sent to the computer. They are heard on the TV Speaker.

POWER SUPPLY

The Power Supply receives 22 VAC from the external Power Adaptor and converts it to the following DC voltages.

- +V (≈18v) Used for the Hook Relay and Carrier LED Drive Circuits
- +12V Used by the Modem Chip (M4)
- +5V Used throughout the PC Board
- -5V Used for the Hook Relay Drive Circuit and the Modem Chip (M4)
SECTION TWO

SILKSCREEN AND SCHEMATIC

An oversized silkscreen and schematic are stapled to the front cover of the manual.
SECTION THREE
TEST PROCEDURES

IMPORTANT: In order to test the unit completely, the customer must return the 835 DCM, the 835 power adaptor, and the Telelink II Cartridge to the service center.

EQUIPMENT REQUIRED

- Standard Tool Kit
- Oscilloscope
- Chip Remover
- ATARI 800™ Computer
- ATARI 835 Test Diskette
- ATARI 810™ Disk Drive
- BASIC Cartridge
- Digital Voltmeter (optional)

WARNING: Do not hook the 835 DCM to Bell Telephone's "Horizon System". Doing so damages the telephone system. "Horizon" is a 4-wire, non-standard configuration that accepts only touch-tone pulsing.

POWER-UP SEQUENCE

Power up the 810 Disk Drive and insert the test diskette.

Insert the BASIC cartridge in the computer. Leave the computer off.

Connect the 835 DCM and power it up. The Power LED should light and stay lit. The On-Line LED should flash once and stay off. The Relay (K1) should click once. If this series of events does not occur, go to the Troubleshooting Flowchart, Section 4, page 4-2.

Turn on the computer to boot the test diskette. This automatically loads the device handler required for the 835 DCM.

TEST SEQUENCE

When READY appears on the screen, type RUN"DI:TEST835" and press RETURN. This loads and runs the program used for testing the 835 DCM.

When the title appears on the screen, type any key on the computer and the Option Menu appears.

The following procedure tests all functions of the 835 DCM. If you prefer to follow these procedures in flowchart format, turn to the page referenced at the start of each sequence. If a function does not operate properly, you must turn to the flowchart to locate the repair procedures.
<table>
<thead>
<tr>
<th>Operation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOGGLE TV SOUND ON TEST</td>
<td>Flowchart Entry Page 4-6.</td>
</tr>
<tr>
<td>Press key 2.</td>
<td>This key toggles the TV sound ON.</td>
</tr>
<tr>
<td>Press key 1.</td>
<td>This key toggles the direction to ANSWER. You should hear a high-pitched tone coming from the TV speaker.</td>
</tr>
<tr>
<td>Press key 1, again.</td>
<td>This toggles the direction to Originate. You should hear a low-pitched tone.</td>
</tr>
<tr>
<td>Press key 2.</td>
<td>This toggles the TV sound OFF.</td>
</tr>
<tr>
<td>TELEPHONE OFF-HOOK TEST</td>
<td>Flowchart Entry, Page 4-5.</td>
</tr>
<tr>
<td>Press key 3.</td>
<td>This key toggles the telephone OFF-HOOK. You should hear the Relay click. The right-hand column of the Option Menu read: OFF.</td>
</tr>
<tr>
<td>Press key 3, again.</td>
<td>This toggles the telephone ON-HOOK. You should hear the Relay click. The right-hand column of the Option Menu reads: ON.</td>
</tr>
<tr>
<td>Press key 9.</td>
<td>This key toggles the telephone OFF-HOOK (the Relay clicks on) and sets the Carrier Detect circuit in operation. A WAITING FOR CARRIER MESSAGE appears on the screen. It should remain for 30 seconds, at which time the Relay should click off and the Option Menu should return to the screen.</td>
</tr>
<tr>
<td>AUTODIAL TEST</td>
<td>Flowchart Entry, page 4-8.</td>
</tr>
<tr>
<td>Press key 7.</td>
<td>When you press key 7, a warning message about "Horizon" phone systems appears, along with a request for the local telephone number of TIME. If the modem is not hooked up to a telephone line, ignore this request and press RETURN. Key 7 tests the Autodial function of the 835. A menu entitled AUTODIAL OPTION appears on the screen with three options. Option #1 is for testing the modem without being connected to a telephone line. Options #2 and #3 can also be used for testing the 835, but only if you have a telephone line connected to it.</td>
</tr>
</tbody>
</table>
Operation

Explanation

If you Press key 1, the Relay should click on. After a three second wait (waiting for Dialtone), the Relay starts pulsing as the digits are dialed. The Relay starts with short pulses for the one and then sends pulses progressively longer, with 0 being the longest. After 30 seconds (waiting for carrier), the Menu returns to the screen.

ANALOG LOOPBACK TEST

Press key 8.

Flowchart entry, page 4-13.

This key starts the Analog Loopback Test, which tests the internal circuitry of the Modem IC (M4). The following sequence of events should occur:

- The screen turns gray and displays CARRIER (ACQUIRED).
- The On-Line LED on the 835 lights up.
- The data sent from the computer to the 835 and the data sent from the 835 to the computer displays on the screen. This data should be identical.

The above procedure completes the testing of the 835 DCM.

Be sure the Telelink II™ cartridge works correctly, according to the Operator's Manual. If not, replace it. Be sure the customer uses Telelink II exactly as the Operator's Manual instructs.
SECTION FOUR
DIAGNOSTIC FLOWCHART

The Diagnostic Flowchart for the 835 DCM is designed to be easy to use and the primary aid when troubleshooting the 835. When a line terminates with a letter inside a circle, locate the page that begins with that letter in a circle and continue the diagnosis. The flowcharts are arranged in alphabetical order.

Should a problem persist despite your having followed all of the prescribed repair procedures, call the ATARI Techline Specialist:

Inside California (800) 672-1466
Outside California (800) 538-1535
835 MODEM DIAGNOSTIC FLOWCHART

A

Turn unit on.
(See Power-up Procedures Section 3.)

Is Power LED lit?
Yes

Is Power Adaptor good? (Swap with known-good adaptor.)
Yes

Replace Power Adaptor.

No

Does on-line LED flash once, then go off?
Yes

Does Relay click once?
Yes

Load and run 835 test program. (See Test Procedures, Section 3.)

No

Is on-line LED flashing?
Yes

No

Load and run 835 test program. (See Test Procedures, Section 3.)

C

D

A
POWER LED FAILURE

B

Is voltage at the cathode of CR3 ≥ 19VDC?

Yes
Replace LED CR12.

No
Replace bridge rectifier diodes CR1-CR4.

A
SELF-TEST

C

Is LED flashing at a slow rate?

Yes

Replace (M5) Controller Chip.

No

Replace (M4) Modem chip.

A
TELEPHONE OFF-HOOK TEST

D

Press key 3 to toggle telephone off-hook.

Does Relay click on?

No K

Yes

Press key 3 to toggle telephone on-hook.

Does Relay click off?

No Replace Relay (K1).

Yes E

Press key 9 to toggle telephone off-hook (Relay clicks on) and wait for carrier.

Does hook relay (K1) click off after 30 seconds?

No G

Yes
TOGGLE TV SOUND ON TEST

F

Press key 2 to toggle TV sound on.

Press key 1 to toggle direction to answer.

Turn up volume on TV set.

Is there a high-pitched tone from the TV speaker?

Yes

Press key 1 to toggle direction to originate.

No

Is there a low-pitched tone from the TV speaker?

Yes

Press key 2 to turn off TV speaker.

D
HOOK RELAY FAILURE TEST

- **G**
 - Hook scope probe to Test Point 1 (See schematic). Set scope for 1V per division
 - **Is voltage ≥ 4.8V?**
 - **No**
 - **Replace in order:**
 - 1. C9
 - 2. R30
 - 3. M4
 - **Yes**
 - Press key 9.
 - **Yes**
 - Does voltage drop slightly (25mv) for 30 seconds and then go back to original?
 - **No**
 - **K**
 - **Yes**
 - Tap Relay with handle of screwdriver.
 - **Does it click off?**
 - **No**
 - **K**
 - **Yes**
 - Replace Relay (K1).

- **E**
AUTODIAL TEST

H

Press key 7 to check Auto-Dial feature.

Optional

Connect Modem to phone line.

Press key 2.

This key automatically dials "Time," which can be heard on the TV speaker. The number for "Time" varies from city to city.

The modem disconnects after 30 seconds.

Press key 1 to start testing digits.

Does Relay click once and wait for 3 seconds? (waiting for Dial-Tone)

No

K

Yes

Does Relay pulse a short time for a 1 and progressively longer for digits up to 0?

No

Yes

Return to Main Menu. This occurs automatically after 30 seconds when no carrier is detected.

By pressing key 3 you can type in your own series of digits.

Press the RETURN key to dial the sequence of digits.
AUDIO LINE OR TRANSMIT FAILURE

1

Hook scope probe at Test Point 2. (see schematic)

Is the signal on this line low .1V?

Yes

No

Replace in order:
1. M5
2. M3

Hook scope probe to Test Point 3. (See schematic)

Is there a sinewave of 2225Hz (answer) or 1225Hz (originate)?

Yes

Hook scope probe to pin 15 of M3.

No

J

Is there a sinewave of 2225Hz or 1225Hz?

Yes

Replace in order:
1. I/O Cable
2. C14
3. R3

No

Replace M3.

F
AUDIO LINE OR TRANSMIT FAILURE (continued)

J

Hook probe to pin 1 of M2.

Is there a sinewave?

No

Replace in order:
1. M4
2. M2

Yes

Replace in order:
1. R19
2. R20

F
AUTODIAL FAILURE (continued)

L

Hook probe to pin 14 of M3.

Does this line switch HIGH=4v/LOW=5v when key 3 is toggled? No

Replace in order:
1. M3
2. Q1

Yes

Does the Collector of Q1 go HIGH=19v/LOW=5v when key 3 is toggled? No

Replace Q1.

Yes

Replace Relay (K1).

E
ANALOG LOOP-BACK TEST

Press key 8.

The "Analog loop-back" test checks the internal circuitry of the Modem IC (M4).

The following sequence should occur:
1. The screen displays carrier (acquired).
2. The screen turns gray in color.
3. The on-line LED on the 835 lights.
4. The data sent from the computer and the data received from the 835 modem are displayed.

Do any or all of the above fail to occur?

No

This ends the test sequence

Yes

Place an oscilloscope probe on pin 1 of Modem IC (M4).

Is this pin HIGH +5V?

No

Replace 835 controller IC (M5).

Yes

Replace Modem IC (M4).
SECTION FIVE
PARTS LIST

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>C015970-02</td>
<td>Top Housing</td>
<td></td>
</tr>
<tr>
<td>C015971-03</td>
<td>Bottom Housing</td>
<td></td>
</tr>
<tr>
<td>C060549</td>
<td>MPU 8048</td>
<td>M5</td>
</tr>
<tr>
<td>C060557</td>
<td>FCC Phone Cord</td>
<td></td>
</tr>
<tr>
<td>C060558</td>
<td>TAP (Canadian) Phone Cord</td>
<td></td>
</tr>
<tr>
<td>CA012957-16</td>
<td>Telelink II Cartridge</td>
<td></td>
</tr>
<tr>
<td>CA060535</td>
<td>Power Adaptor</td>
<td></td>
</tr>
<tr>
<td>FC100276</td>
<td>1N4733 Zener 5V</td>
<td>CR5,CR6,CR7,CR10</td>
</tr>
<tr>
<td>FC100277</td>
<td>1N4742 Zener 12V</td>
<td>CR9</td>
</tr>
<tr>
<td>FC100278</td>
<td>4558 Dual Op-Amp</td>
<td>M2</td>
</tr>
<tr>
<td>FC100279</td>
<td>Modem IC TI99532</td>
<td>M4</td>
</tr>
<tr>
<td>FC100280</td>
<td>4053 MUX/DEMUX</td>
<td>M3</td>
</tr>
<tr>
<td>FC100281</td>
<td>LM339 Comparator</td>
<td>M6</td>
</tr>
<tr>
<td>FC100282</td>
<td>Crystal 4.032 MHz</td>
<td>Y1</td>
</tr>
<tr>
<td>FC100283</td>
<td>Transformer, 600 Ohm</td>
<td>T1</td>
</tr>
<tr>
<td>FC100284</td>
<td>Relay</td>
<td>K1</td>
</tr>
<tr>
<td>FC100285</td>
<td>Power Plug Connector</td>
<td>J1</td>
</tr>
<tr>
<td>FC100286</td>
<td>RJ11C Phone Jack</td>
<td>J4, J5</td>
</tr>
<tr>
<td>FC100287</td>
<td>Socket, 18-pin IC</td>
<td>M4</td>
</tr>
</tbody>
</table>
SECTION SIX

SERVICE BULLETINS

This section is to be used by you to file the three classifications of service bulletins that are periodically released by the Director of Technical Support.

The following are brief descriptions of each classification:

FIELD CHANGE ORDER

A Field Change Order describes mandatory hardware or software changes to ATARI Computer products and instructs how to implement these changes. The changes must be performed on all units serviced or repaired.

UPGRADE BULLETIN

An Upgrade Bulletin describes product improvements or modifications that the consumer may wish to purchase. These bulletins allow you to modify the customer's unit to add capabilities which may not have been available when the unit was originally manufactured.

TECH TIP

A Tech Tip is a document of a general nature which transmits routine service or repair information. By communicating methods developed since you attended training classes, Tech Tips aid to continuously improve repair skills and increase knowledge of ATARI Computer Products.

Other times, Tech Tips alert you to units that have been modified and are now standard for ATARI Manufacturing, but are different from many existing units and require different repair techniques.

835 Direct Connect Modem
Field Service Manual 6-1